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Abstract

A model for the mass sensitivity of Love wave aagkr guided shear horizontal acoustic plate moéke (S
APM) sensors is developed by considering the praiiag of shear horizontally polarized acoustic wave
in a three layer system. A dispersion equationeisved for this three layer system and this is show
contain the dispersion equation for the two layestesm of the substrate and the guiding layer pltesa
involving the third layer, which is regarded as exrtprbing mass layer. This equation is valid for an
arbitrary thickness perturbing mass layer. Theupkation,Av, of the wave speed for the two-layer
system by a thin third layer of densigy, and thicknesah is shown to be equal to the mass per unit area
multiplied by a function dependent only on the mxtigs of the substrate and the guiding layer, thed
operating frequency of the sensor. The independehtiee function from the properties of the thiayér
means that the mass sensitivity of the bare, twerlasensor operated about any thickness of thairgyi
layer can be deduced from the slope of the numirioa experimentally determined dispersion curve.
Formulae are also derived for a Love wave on amitef thickness substrate describing the change in
mass sensitivity due to a change in frequency.cimsequences of the various formulae for massregnsi
applications are illustrated using numerical caltohs with parameters describing a (rigid) PMMA
wave-guiding layer on a finite thickness quartz sttdie. These calculations demonstrate that a-layer
guided SH-APM can have a mass sensitivity comparab] or higher, than that of Love waves
propagating on the same substrate. The increas®ds sensitivity of the layer guided SH-APM'’s over
previously studied SH-APM sensors is of signifieanparticularly for liquid sensing applications.€eTh
relevance of the dispersion curve to experimeniisgukigher frequencies or frequency hopping and to

experiments using thick guiding layers is discussed
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l. Introduction

Acoustic wave sensors work on the simple principlat a surface is set into high frequency
oscillation and interactions with the environmelose to the surface cause either energy storageesgy
loss. These effects are often observed experintgrdal changes in resonant frequency, representing a
shift in wave speed, and as a broadening of a eemanfrequency, representing changes in attenudtion
Rayleigh surface acoustic wave (SAW) sensors, thstgate particles execute a retrograde elliptical
motion in the plane described by the direction afpagation and the normal to the surfadeayleigh-
SAWSs are highly sensitive to deposited surface niads due to the out-of-plane component of their
displacement have significant attenuation if thefasie supporting the wave (i.e. the sensing suyface
exposed to a liquid. This is unfortunate since mapplications of current interest involve the depos
of mass from the liquid phase. There are two tygfeapproach to extending the use of acoustic wave
sensors to the liquid phase. The first is to uflexairal plate wave (FPW) which, although it hascarn-
of-plane component of displacement, has a wavedsiess than the speed of sound in the ligtithnder
these circumstances, the wave can no longer genevatpressional waves in the liquid and so does not
suffer a large attenuation. The second approati use an acoustic wave mode that has surfacelglaral
displacements. Examples of such waves, in apprdgirmaler of mass sensitivity, include the thickness
shear mode (TSM) of the quartz crystal microbalaf@€M)*°, a shear horizontal acoustic plate mode
(SH-APM)’®, a shear horizontal surface acoustic wave (SH-SA®W)ayer-guided SH-SAW, a surface
transverse wave (STW)or a Love wavE™, which is an SH-mode with a wave guiding ldyefThe
difference in the sensitivity between these devisesnormous with the mass sensitivity of Love vg&ve
and more recently the layer guided SH-SAWSs, beegsal orders of magnitude greater than that of SH-
APM'’s. For this reason much recent experimentalkalwais preferred Love wave devices. However, a
problem with such devices is that the interdigitahsducers (IDTs) used to generate and detesvdke
are located on the same face of the substrateeasotiitacting liquid; this is a problem not shargdhe
less sensitive SH-APM devices. Locating IDTs on ghme side as the liquid causes difficulties bezaus
of the dielectric constant of the liquid and, degieg on the guiding layer’s dielectric constang tieed

to have liquid seals within the propagation path.

In this work, we develop a theoretical framework mderstanding the mass sensitivity of layer
guided SH-APM®'” and Love wave sensors. In section Il, the propagadf a shear horizontally
polarised acoustic wave in a three-layer systemoissidered and a dispersion equation is derived. In
section lll, the third layer is then regarded athia mass layer that is to be sensed and a petininba
approach is used to derive a mass sensitivity farfar the phase speed. The basic sensor chasdieri

of a layer guided acoustic wave device can be dmtldiom the dispersion equation describing the



substrate and wave-guiding layer. Section IV dgy&lguantitatively, the interpretation of this disgion
equation and introduces the idea of determiningithss sensitivity from a numerically or experiménta
determined dispersion curve. In section V, the eqosnces of the relationship between the mass
sensitivity and the dispersion curve are derivedafdevice operated at either a higher frequenayare
than one frequency. The previous formulae are dugrisidered numerically and their predictions fowvne
sensors and their consequences for current expaisnaee discussed in section VI. The relevancéef t
theory to Love wave sensors working at multiplejfrencies and to Love wave sensors with thick wave-
guiding layers with lossy materials is discusseds klso suggested that the new layer guided SNLAP
sensor will have a significantly enhanced massises possibly exceeding that of a Love wavengsi
the same substrate and guiding layer. This suggestiters the currently accepted notions of thetmos
sensitive type of device and offers the advantdge lighly mass sensitive liquid phase sensor with

transducers located on the opposite face to th&rmpsurface.

. Theoretical Formulation

The problem of the response of a two-layer systéna substrate and a wave-guide to the
deposition of rigid mass is essentially the problginthe propagation of acoustic waves in a thrgefla
system. For the finite substrate Love wave andrlgyéded SH-APM sensors, we consider a substrate of
thickness,w, with a densityo, and Lamé constantd, and ys overlayed by a uniform mass layer of
thickness,d, and with a densityy and Lamé constant§ and 4. In analogy to Love wave theory, the
uniform mass overlayer is referred to as the ggidayer; this two-layer system is the bare sensar a
possesses a dispersion curve. In a previous répatdescribed how a dispersion equation can beetéri
for this two-layer system and how that dispersignation contains generalisations of Love waves from
infinite thickness substrates to finite thickneabstrate and of acoustic plate modes from non-guide
layer guided modes. The present formulation usess#tme approach, but introduces into the system a
third layer of thicknesd), with a densityg,and Lamé constant, and 4. This third layer is referred to as
a perturbing mass layer, although the dispersiaaian derived in this section for the three-laggstem

is in fact valid for an arbitrary thickness thied/ér.

Consider wave motion in an isotropic and non-pitztigc material of density and with Lameé

constantsl and. The displacements, are then described by the equation of mdtjon
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where the Einstein summation convention has beed asd the strain tensd@;, is defined as,
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The boundary conditions on any solution requiresaieration of the stress tensdg, which can be
written in the form,

Tij =105 Sy +24S; )
The upper surface of the substrate is taken tonhbthe &;,x;) plane and located at=0 (fig. 1). The
solutions of the equation of motion are chosenaeeha propagation along theaxis with displacements
in the x, direction of the sagittal planex(Xs). They must also satisfy the boundary conditionstioe
displacementa and theTi; component of the stress tensors. These must bethohtinuous at the
interfaces between the substrate and guiding |layeat, between the guiding layer and perturbing mass
layer. TheTi; component of the stress tensors must also vahiste free surfaces of the substrate and the

perturbing mass layer &=-w andxs= (d+h), respectively.

In order to preserve the notational similarity witie Love wave problem, a solution for the
equation of motion is sought by using displacemémthe guiding layeru,, the substrateys, and the
perturbing mass layeu,, of

e (O;LO)IA e‘jTIX3 + B|ejT|X3Jej(aI_k1X1) (4)
u, = (O,].,O)ICSG_TSX3 + DseTsxs Jei(fd—klxl) (5)
U, = 020 Epe P8 4 Rl Jellunton) ©)

where wis the angular frequency and the wave vectdeiga/v)? wherev is the phase speed of the
solution. A, B, Cs, Ds, E,, Fy, are constants determined by the boundary conditioA traditional Love
wave solution occurs when the substrate thickmess», the shear speed of the substrs;e,wslps)l’z, is
greater than the shear speed of the layer(u/0)"% and the wave vectof is real, so that the substrate
displacementus, decays with depth. A traditional SH-APM solutioccurs whenw is finite,d — 0 and the
wave vectolTy is purely imaginary, so that the solutiag, may take on a standing wave (resonant) form.
In the more general case under consideration beth, T, andTs may be complex rather than real and no
restriction to real is placed updp. The use of the exponentials with &actor in Eq. (4) and without ja
factor in Eq. (5) is therefore purely to enable similarity with the Love wave theory to be moraddy

noted. The choice of the exponential withfactor in Eq. (6) is to emphasise the notatioimallarity with



the guiding layer. One patrticularly simple limit tife theory is to regard the perturbing mass lager

nothing more than an extension of the guiding lagssif, by setting the material properties to fane

values.

Substituting Eg. (4) into the equation of motiorsciébing the layers, i.e. Eq. (1) with the relevant
layer parameters, gives the equations for the waeersTs, T;, andT,
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To completely specify the problem the boundary ik are imposed and this defines the constants
B, C, Ds E, and F, in Egs. (4)-(6). The first type of boundary cordit is continuity of the
displacements at the interfaces between the layetshese give,

A1 + BI = Cs + Ds
A expl- jTd)+ B exp(jTd)=E, expl- jT,d)+ F,expljT,d)

(10)
(11)

The remaining conditions all relate to thig component of the stress tensor, which for thisesgausing
the form of the solutions in Egs. (4)-(6) can bétten as,

ou
Tz = é_izﬂ[—aXZ] (12)
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The second type of boundary condition, continuftyfi@at the substrate-layer interface, gives,

- A +B =j(Cs - Ds)é (13)
and
- A expl- jTd)+B exdjT d)=|- E, exd- jT,d)+ FyexpiT,d)¢, (14)
whereé andé§, have been defined as,
uT
and
HpTp
$p = (16)
P ouT



The remaining two boundary conditions are vanistohgtress at the two free surfacessat(d+h) and
X3=-w, and these give the equations,
EpexpiTp(d +h)-Fpexp(jT,(d+h))=0 a7
and
Csexp(T w) — Bgexp(-T,w) =0 (18)

The six boundary conditions, Egs (10), (11), (3}1), (17) and (18) define both a dispersion eguati
and the coefficientsA, B, Cs, D, E; and F,, in the solutions for the displacements. After agtee

algebraic manipulation we find the dispersion eipumat
tan(T,d) = £ tanh(Tow) - £, tan(T ,h 1.+ & tan(T, d) tanh(Tow)] (19)

The second term on the right hand side of Eq. @@#)ch involvesétan(T,h), is due to the presence of
the third, perturbing, mass layer. Setting thekihiéss h, of the perturbing mass layer to zero recovers the
dispersion equation for the two-layer system ofubsfrate with a guiding layer. When the substrate
thicknessw - o with T real, so that the tanhfv) - 1, Eq. (19) gives the limit of a traditional Loveave
perturbed by an arbitrary thickness perturbing nager. The layer guided SH-APM’s correspond to

T=jks whereks is reat”.

1. Perturbation Theory

When operated as a sensor, a Love wave device firageahickness wave-guiding layer; it is the
finite thickness which is responsible for the highss sensitivity. The presence of a finite thickngave-
guiding layer means that the wave speed for theelwaves is smaller than the substrate shear speed.
Similarly, the wave speed for the layer guided SPMRs are larger than the substrate shear speed. A
third, thin perturbing, mass layer therefore attsud a particular operating point on the dispersiorve

of the bare, two-layer, system defined by,
tan(Tlod) =&° tanl{Tsow) (20)
where the superscripts dif andT indicate the wavevectors in Egs (7)-(9) are gibgra solution to Eq.

(20) forv=v,2vs, the superscript 0g° indicates thaf,° andTS are used in Eq. (15). The solutions for this

system have been discussed in detail in a prevepmrt’; it should be noted that the limit of a vanishing



wave-guiding layer has to be handled carefullyhasinvolves the conversion from layer guided atious

plate modes with an imaginary wave-vector to Lowwes with a real wave-vector.

Consider a perturbing third mass layer of thicknés#\h. This perturbation of the two-layer
system will result in a decrease in the phase spédkde mode, irrespective of whether that moda is
Love wave or a layer guided SH-APM. The perturbatidgll cause changes in the phase speeds and the
wave-vectors of the substrate and guiding layedsves can therefore wrif§ °— T, “+AT), Ts°— T +AT;
and & - &+A¢& where the superscript zero indicates the valugbeofjuantities wheAh=0 (i.e. solutions
of Eq. (20)). The left hand side of the three-lagispersion equation (Eq. (19)) can then be wrjtten

tan(T,°d )+ tan(AT, d)

d) =
tanfid) 1- tant{T,°d Jtan(AT, d)

(21)

The first term on the right hand side of the thisgger dispersion equation (Eq. (19)) can be wrijtten

(o]
FtanHT.w) = (£ + A¢) tant{TS w)+ tanhAT w) (22)
1+ tanh{Tdw) tanh@A T w)
and the second term can be written to first order a
& tan(Tp hll + &tan(T, d)tanHTw)| = & ngAhll +&° tan(ﬂod)tani{Tsow)J (23)

The expansion i&hé can be written in terms &T, andATs using Eq. (15) and both of these quantities can
be related to the chang®y, in the wave speeds, using Egs. (7) and (8). Performing these mantmna

and grouping terms, we find that Eq. (19) givespghgurbation formula,

Vh
s Pp9(@,Vs, o1, v, W, d)Ah (24)

Vo 5

where the functiow, is defined as,
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and depends only on the operating frequency angepties of the substrate and wave-guiding layer.
These formulae are only valid for perturbationswdl@n operating point on the two-layer dispersiorve

that satisfies/zvs andv,2v;; a discussion of the difficulties of perturbingettwo layer dispersion curve
about the start of a Love wave mode, or the sedalE0 SH-APM mode, has been given in reference 17.
It should be noted that due to the frequency deperel ofT,° andTS in the functiong, Eq. (24) does not,

in general, predict a frequency-squared dependi@ndae fractional shift in phase speed. The fuorcy
determines the mass sensitivity of the sensor devibe structure of the formula in Eq. (24) is ey

consistent with the result given by Atfid

2
Av \Y \Y 2
== ——0(1— V—g} pplUs|"Ah (26)

A 4 <

where U is the normalized particle velocity displacementhe surface. The combinatiog,Ah, of the
density and thickness of the perturbing mass lgpers the mass per unit surface asa, and we can

therefore re-write Eq. (24) as,

Av v
= 1_v_§ a(w,vs, .V, w,d)Am (27)

V. Mass Sensitivity from the Device Dispersion Curve

Experimentally, the significance of Eq (24) an®)(% that if we can determine the sensitivity
function, g, for any perturbing layer, then it is the samection for any other perturbing mass layer. Now
consider a two-layer system and imagine creatinthirathird layer of the same material as the wave-

guiding layer. Writingk<=d andAh=Ax, Eq. (24) becomes,
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where the subscript zero indicates the value optiese speed at a thicknessl. Making the third layer

infinitesimally thin we may write the functionq, as,

g(w,vm,w,w,d)=*(1—)1 (QJ (29)
Vo —V|2/V§ X )y=g

Thus, the sensitivity function involves the slogehe phase velocity dispersion curve with guidiager

thickness at the guiding layer thickness operagpinigt. Using Eq. (29) we may simplify Eq (24) to,

A_P_[i]i(d

= ah (30)
Vo 2 1_V|2/V§ Vo dij:d

and this may be further simplifiedvf’<<v,” andvi’<<v,’. Eq. (30) can be re-written using the perturbing
massAm= gydh. Equation (30) should be of particular use in digmeg wave-guide based acoustic wave
sensors, because it enables the mass sensitiviypodspective device to be assessed directly fhem
dispersion curve. Moreover, this dispersion cunan de determined either numerically or from
experimentation by systematically increasing thiekiless of the wave-guide layer. Whilst arguments
based on perturbation theory have been used imidgrEg. (30), the formula itself is for a pertutioa

on top of a wave-guide layer of arbitrary thicknesther than of a vanishing thickness. Defining asm

sensitivity functionS,, we can write,

2 /2
S = iim i@il%ﬁﬂ) -
x=d

am-oAm\ Vo | o | 1-v2/V2 |V, L dX
or,
1-v2 V2
Sm:i g/g (dlogevJ (32)
A l-y /Vo dx x=d

where the mass sensitivity functid®, is in units of Mmkg™. Thus, the mass sensitivity of a Love wave or
a layer-guided shear horizontally polarized aceouptate mode device can be determined numerically

from the dispersion curve. Whilst a relationshipa@Een the maximum slope in a dispersion curve had t
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maximum mass sensitivity for surface acoustic waemsors has been remarked upon by some

researcherd Eq. (32) gives it an explicit theoretical basis fove waves and layer guided SH-APMs.

It is interesting to note that an often drawn casn from Auld’s result, Eq. (26), is that the
device sensitivity increases ds at the sensing surface increases and that thisspmnds to a trapping of
the acoustic energy to the surface. If we assugya, then Eq. (32) only involves the slope of the
logarithm of the dispersion curve and, for Love esvthis slope is a maximum at the transifimm a
wave dominantly in the substrate to one dominairtithe wave-guide layer. At greater wave-guide
thicknesses the Love wave mode is increasinglylikezh in the wave-guide layer, compared to the
substrate, but this leads to lower mass sensitrdthier than higher mass sensitivity; this conclsi
applies only when a particular Love wave mode isntamned throughout the increase in wave-guide
thickness. Thus, to create a highly mass sensiévice the wave-guide layer thickness should be&mo
such that the wave is close to a transition betvileertwo intrinsic wave speetisandv,. The wave-guide
layer and substrate materials should also be chosebtain a sharp transition in the dispersiorveufor
high mass sensitivity the aim is not to fully codfithe wave to the guiding layer, but to place the
operating point on the transition point of the @isgon curve. This change of emphasis in interficeta
away from focusing olJ; is important in understanding the potential of ldnger guided SH-APM modes.
The layer guided SH-APM modes have a wave speegriahan the substrate speeg,but can still
possess a sharp transition (with guiding layerkiindss) between two intrinsic plate mode speeds.
Moreover, by arranging the substrate thicknessapijately, the two plate mode speeds involved & th
transition can be well-separated in value so timaistope in the dispersion curve can be large leadiass
sensitivity can be high. In fact, the Love waveecas/olves a transition between andv;, and so the
change in speed due to the transition cannot gerddhanvs whereas no such restriction occurs for a layer
guided SH-APM sensor. It may therefore be posdiblereate a layer guided SH-APM sensor using the
same guiding layer and substrate materials as & Wwawe device, but with higher mass sensitivity and
with the advantage of being able to excite the magleg transducers on the opposite side to therggns
surface. This possibility is further investigaten $ection VI using numerical calculations for the

dispersion curves.

V. Mass Sensitivity and Frequency Dependence

In a two-layer system with a finite thickness st and finite thickness wave-guiding layer, the
frequency enters the calculation of the wave-spegthrough the two dimensionless combinatiohg=
dffvi andwid= wflvs. When the substrate is infinitely thick the layprided plate modes are no longer

possible and only Love waves can exist. Moreoversuch an infinite thickness substrate the phasedsp
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for a Love wave depends on frequency only throlnghdimensionless combination of d/A, = dffv;, so
that a change in guiding-layer thicknedsis equivalent to a change in operating frequehcyhus, Eq.
(32) (or Eq. (31)) can be used to assess the changensitivity that will occur through a change in
operating frequency, for a given mass perturbation, on a particular device. The dispersion curve can
be plotted using the dimensionless variakl@nd the slope on this dispersion curve can laeelto the

slope in the dispersion curve when plotted agajoiting layer thickness,

3,4
dx X=Xg v \dz 7=74

where the subscript o implies the values of theéousrquantities at the operating point of the disjoa

curve. The mass sensitivity function, Eq. (32)nthecomes,

2 /\,2
1—vp/v0

S S TACY
™ [1-\42/\/5

Wdz

o [d Iogevj (34)
7=274

One immediate consequence of Eq. (34) is that fgiven Love wave mode the peak sensitivity
(maximum value ofs,) is directly proportional to frequency. This ischese any frequency increase can
be accompanied by a corresponding reduction ivalhee of the guiding layer thickness so as to kéep
value ofz constant at the appropriate operating point ferrttaximum sensitivity of the dispersion curve;
neither the maximum value of the differential o flog, norv,, at this value ot change with frequency.
The shift in phase velocity (at fixed operatinggiiency) due to sensed mass for a Love wave device w
scale with the frequency, provided the guiding fatléckness has been chosen to obtain maximum
sensitivity for that operating frequency and themed.ove wave mode is used at each operating freguen
If the guiding layer thickness is different to thigtimal one for maximum mass sensitivity then thangn
phase velocity sensitivity would not scale withAlso, if a frequency change is made that takds\ace
from one Love wave mode to another then the maxirgam in sensitivity would be less than fhiactor
because the peak values of the differential ofaggerm in Eq. (34) will be different. Love wavewces
are dispersive so that frequency shift, which isisueed in oscillator configurations, due to addedsris
given byAf/f=(vg/V)(Av/V), wherevy is the group velocity. The ratio of group to phastocity varies along
the dispersion curve and the translation of massitbéty from the phase speed definition of EqlL) 3o

Af/f therefore requires care.
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In previous work, we have reported that Love wageices can be designed with transducers that
operate at harmonic frequenditg¢see also Weisst al). This enables a single device with a given
guiding layer to be “hopped” from one operatinggirency to another during the course of a single
sensing experiment. Thus, it is of particular iagtito know the change in mass sensitivity of aslwave
device that arises by changing frequency, whilgtpkeg the wave-guide thickness constant, so thet th
operating point on the dispersion curve is alteFegdm Eq. (34), the mass sensitivi§, at a frequencys

compared to the mass sensitivily, at a frequencf, is given by,

dlog,
1-v3 v 122 ¢ ( ct)ig ij:z
T NN

1-v3 V2 | 1-vE/V3 |

It should be noted that Eq. (35) is valid whethenot the change in frequency leads to a Love widve
the same mode. In a harmonic type device desigfréa@ency change would typically be a doubling or

trebling and could therefore involve a change ofd.aave mode.

VI. Numerical Solutions and Discussion

The numerical solution of the dispersion equationtfie two-layer problem of a finite thickness
substrate covered by a wave-guiding layer has pusly been consider&d”’. In general, for any given
guiding layer thickness the phase speed is multipleed with both multiple layer guided SH-APM
modes and multiple Love wave modes. Solutions \pitlase speeds greater than the substrate shear
velocity, vs, are layer-guided SH-APM'’s and solutions with ghapeeds less than the substrate shear
velocity, vs, are generalisations of Love waves to a finiteckhess substrate. Figure 2 shows the
dispersion curve diagram for an operating frequesfdy100 MHz on a substrate of thicknegs100um
and with density and substrate speed typical oftgua=2655 kg it andve=5100 md). The wave-guide
layer parameters ap@=1000 kg n andv=1100 m& and correspond to PMMA. The horizontal-axis has
been plotted using a dimensionless parameter ovthes-guiding layer thickness scaled hyv/f. The
solid circles on the curves indicate thicknessewldath solutions have been determined analyticadly
well as numerically. In the simplest interpretatafrmass sensitivity Eq. (34), suggests that theimam
sensitivity occurs at the maximum slope of the esrFigure 3 shows the modulus of the mass sesitiv
ISy, calculated from Eq. (34) for the first three kowave modes in fig. 2. The corresponding curves fo

the layer-guided SH-APM modes are shown in figAd.anticipated the maximum sensitivity occurs on
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the back-slope of each mode in fig. 2 which, fa& rarameter values used for the calculations, & at

guiding layer thickness af [ (2n+1)A/4 wheren is an integer.

The numerical calculations of the mass sensitigitythe layer-guided SH-APM modes can be
compared to the analytical results for a bare SHAAdevice perturbed by a thin mass layer. Mastin
al”# give the formulas,=-1/(ow) for then>0 modes of a SH-APM device and one-half this vétughe
n=0 mode. However, in our previous work we demonsttahat under mass loading the0 APM
degenerates into a Love wave and the previouslyequecesult for then=0 mode does not therefore

applyt’. We also derived the following more general refitthe perturbation of the>0 modes of a bare

SH-APM device,
2 2
Vv \Y/ 1
Sn=| 5 |1-—% ( ] (36)
Vs Vit \ PsW

wherev,, is the unperturbed SH-APM mode speed of the bavecd. For the calculations in fig. 2 and fig.
4 the SH-APM modes have speeds of 5274.36, 592:03918.88 mscompared to the substrate speed

of 5100 m 8. The extra pre-factors in Eq. (36) are therefonpdrtant because, is not approximately

equal to the substrate shear spegdivaluating Eq. (36) gives mass sensitivitiesSgf 3.85, 4.92 and
8.91 nf kg’ respectively, for the three>0 SH-APM modes and these are in agreement with the
numerical values in fig. 4 in the limit- 0. From fig. 4 it can be seen that the effect ef gniding layer

on the SH-APM device is to dramatically increase thass sensitivity by more than an order of
magnitude. The greatest gain in mass sensitivityith the highest order SH-APM mode. For the
calculations in fig. 2 the mass sensitivity of thger-guided SH-APMs becomes comparable, to widmn

order of magnitude, of the mass sensitivity ofltbge wave modes.

Physically it is possible to understand the highssnaensitivity that can be obtained in layer
guided acoustic wave systems by considering thengghan the displacements as the guiding layer
thickness increases. Beginning with the first Lavave mode and increasing the wave-guiding layer
thickness from zero, takes the displacement paftem a plane wave in the substrate and layernt® o
with virtually no displacement in the substratet lauquarter-wavelength type pattern in the guiding
layer’. Further increases in guiding layer thickness Witther confine the displacement to the wave-
guide layer, but do not then correspond to higlersitivity. This increase in the wave-guide layer
thickness corresponds to taking the Love wave sfead a value equal to the substrate spegdp a
value close to the layer speed,Further increases in the wave-guide layer thiskrdo not significantly
alter the wave speed of this Love wave mode amgivapoor mass sensitivity. However, increasing th

thickness of the wave-guiding layer does eventugilhes rise to higher order Love wave modes whigh g
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through similar changes in the wave speed (i.enfvoto v). In the case of the second Love wave mode
the displacement pattern begins as a plane watheigubstrate and a half-wavelength type pattethdan
guiding layer. This pattern evolves until it becanae with virtually no displacement in the suldstra
but with a three quarter-wavelength type patterthinguiding layeY. In the Love wave mode case, the
maximum mass sensitivity occurs at the point ohdition of the Love wave from having properties
similar to those of a shear wave in the substatane with properties similar to those of a sheavenin

the layer. In a similar manner, the layer-guided-APM modes change character from one plate
resonance to the next lower order plate resonascth@ wave-guide layer thickness increases. For
example, a transition from a plate mode with a\8&elength pattern in the substrate to one witt2a 1
wavelength pattern in the substrate. The maximurasnsansitivity is when a device is operated with a
wave-guiding layer possessing a thickness chosémasahe displacement pattern is at one of thegagp

of transition. This corresponds to the point on dispersion curve where the phase speed changds mos

rapidly with guiding layer thickness.

In acoustic wave sensor research it is often québed Love wave sensors have a higher
sensitivity than SH-APM sensors whilst SH-APM sesduave the advantage that the transducers can be
on the opposite face to that used for sensingqinds, this latter property can be a significathtantage.
The comparison that leads to the belief that Loa@evsensors are more sensitive than SH-APM devices
does not account for the dispersion curves of #yertguided SH-APM’s shown in fig. 2. The usual
comparison is between a bare SH-APM device, whehefore corresponds on fig. 2 to the slope of the
dispersion curve with a zero thickness wave-guidayger, and a Love wave device chosen to have a
wave-guiding layer thickness corresponding to tteximum slope in the dispersion curve. Clearly, if a
wave-guiding layer is used for the SH-APM devickent an operating point corresponding to the
maximum slope on the dispersion curve can be chasdnthe difference in mass sensitivities is much
less. In the case of the calculations in fig. 2rtteximum sensitivity of the highest mode layer galicbH-
APM is within a factor of 5 of that of the Love wavHowever, in general we would argue that a layer-
guided SH-APM device can not only be of comparalelesitivity, but may in fact be more sensitive than
a Love wave on a given substrate. This is becdwesenaximum change in wave speed for the Love wave
is (vsVi) and this occurs over a small range of guidingetathickness centred around a thickness of
(2n+1)A/4. In comparison, the substrate thicknegsgan be chosen such that the change in speellefor t
highest order layer-guided SH-APM can be far gretiten the differencev{v)); again this change will
occur over a small range of guiding layer thicknesstred around a thickness oh{2)A/4. To further
illustrate this idea, we have numerically calcufatte mass sensitivity using the same materials and

operating frequency as in fig 2 and fig. 3, butwthie substrate thickness modified top#. In this case
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the initial mode speeds for the SH-APMs withoutuéding layer are 5405, 6807 and 44 825 Ehis
particular choice of substrate thickness createsge difference in speed between the top two mades
we therefore anticipate that introducing a guidiager will provide increased mass sensitivity conepla

to the device on the 1Q0m substrate. The numerical comparison between #s sensitivity of the Love
wave and the associated highest order layer-guglddAPM for the first three Love wave modes is
shown in fig. 5. The layer guided SH-APMs are shdwrthe dotted curves and the Love waves by the
solid curves. The mass sensitivity of the Love vgalvas not changed significantly compared to fidg,
that of the layer guided SH-APMs has increasedrenvd exceeds the mass sensitivity of the Love waves.
It is also evident that progressing through theusege of Love wave modes, the peak mass sensitility
the highest layer guided SH-APM mode associateld eaich higher order Love wave mode suffer less of
a drop than that of the higher order Love wave mo@de. the sequence of peak values of the dotted
curves in fig. 5 decreases less rapidly than théte solid curves in fig. 5). The particular cheior the
substrate thickness used in fig. 5 was extremefatmicating devices to obtain this sensitivity n@apve
difficult due to the high phase speed of the mddmwvever, choosing substrate thicknesses to givipa t
SH-APM with a speed of the order of 10 000 fwsould still give mass sensitivities comparabld_twe
wave devices. Thus, by using a layer guided SH-AP8hould be possible to reconcile the requirements
for high mass sensitivity with that of operatingdavice with transducers on the opposite face to the

sensing surface.

In sensors using quartz crystal microbalances amthee acoustic waves, layer guided or
otherwise, higher frequency is usually believedrésult in higher sensitivity. Some aspects of this
possible frequency enhancement of sensitivity fovd-waves on an infinite substrate have been diecus
in section V where it was shown that the peak s$eitgi for a given Love wave mode can scale with
frequency, but that this requires a correspondieduction in guiding layer thickness. Figs 2 and 3
emphasise that increasing frequency with a giversicdeof fixed guiding layer thickness below the pea
in sensitivity will increase the value pfand so increase sensitivity. Since the dispersiowe for a given
mode is not linear, the frequency gain for sucteeak operating away from the peak sensitivity the
mode will not be linear with frequency. To furtherderstand the frequency dependence, imagine a Love
wave on an infinite thickness substrate and withdhiding layer thickness optimised to give maximum
sensitivity for the first Love wave mode. The disgpen curve will look similar to the first Love wav
mode in fig 2 and the operating point will be atwardz=d/A, 0% whered, = v/f. As shown in section V,
on an infinite thickness substrate the frequencly @mters the calculation of the dispersion cume i
combination with the guiding layer thickness throagd/A.. Thus, if we keep the guiding layer thickness,

d, constant and increase the frequency we will mbeeoperating point along the horizontal axis & th
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dispersion curve. The sensitivity at the new opegapoint is related to the slope of the dispersiarve

and the frequency through Eq. (34) (or Eq. (35)). ilamediate conclusion from this viewpoint is that
approximately doubling the frequency will lead tther the same Love wave mode, but with much lower
sensitivity, or the next higher Love wave mode, iagaith a much lower sensitivity. Alternatively,
trebling the frequency will lead to either the samede, but then with low sensitivity, or a poinbs# to,

but not exactly at, the optimum on the dispersiarve for the second Love wave moded/A [0 3/4).
These conclusions are relevant experimentally &s fbssible to design Love wave devices capable of
hopping between several frequencies during theseoof a sensor experiment by fabricating specific

patterns of the interdigital transducers used titex.ove wave¥.

Figure 6 illustrates the effect of altering thetiadifrequencyf,, by a factor of three t8f, so that
the operating point moves from the first to theosecLove wave mode. The horizontal axis data fer th
higher frequency has been plotted using the origioardinatez=df,/v so that a direct comparison of the
sensitivities at the two frequencies can be madeshgling at the same value on the horizontal @&part
from the substrate thickness, which has been gefitote, the parameters in the calculation are sthme
as in fig. 2. A choice o¥,=v; has again been used to help the comparison arsically this corresponds
to mass sensitivity towards the same material asgihiding layer. Importantly, if the guiding layer
thickness has been selected optimally to give tagimum sensitivity of the first Love wave mode la t
operating frequencyf,, then increasing the frequency by a factor ofdladees not result in a significant
change in sensitivity. However, it is more likelyperimentally for a wave-guiding layer thicknesshi®
selected that is not quite optimal for the maximonass sensitivity in the first Love wave mode. listh
situation frequency hopping by trebling the frequemrould result in either a greater or smaller mass
sensitivity. It is possible to align the peak séniies between two frequencies that use modedLraade
2 Love waves for the layer and substrate matetiakd in the calculation of fig. 6 by changing the
frequency by a factor of around 3.04; the ratiopefik sensitivites is then 1.51. Similarly, frequen
hopping by a factor of 5.08 will move the peak ##rig/ of mode 1 to the peak sensitivity of mode3d
give a relative increase in sensitivity of around7l A change in frequency by a factor of 3.04 by
frequency hopping would not be difficult experimaht as typical transducers have bandwidths ofva fe
percent. Aligning the peak sensitivities of two raedwvhen frequency hopping still does not give the
factor of f gain in sensitivity that could be expected by gsiwo devices with their wave-guide layer
thickness optimised for maximum sensitivity for leowave mode 1 at frequencies folnd 3.04
respectively. This is because the peak value ofdtbgz/dz in Eq. (34) is less at the higher mode. It
should also be emphasised that the comparison mdklis section is for the sensitivity function, iwh is

the fractional change in phase speed rather thematibolute change in phase speed.
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A final point of interest to current experimentabnk that arises from fig. 3, is the manner in
which the mass sensitivity for Love waves chang#h thick guiding layers. Often, polymer materials,
such as PMMA, are chosen as wave-guide layers évemgh such materials can have significant
attenuation for shear wave propagation. Therefasesuch a wave-guide layer becomes thicker it is
expected that the insertion loss of the Love wasigad should significantly increase. Experimentathys
can be preceded by an initial improvement in ingertoss, if the substrate is chosen to use a cairfa
skimming bulk wave (SSBW) rather than a pure SH-SAwWde. Thus, an optimised sensor usually
involves choosing a wave-guiding layer thickness @mpromise between the maximum phase velocity
sensitivity (i.e. maximum slope in the dispersiamve) whilst not placing the operating point sodakvn
the dispersion curve for the first Love wave mduk the insertion loss is intolerable. It is easpelieve
that once a guiding layer thickness causes a lagggtion loss, no reasonable sensor can be obtéyne
further increases in the guiding layer thicknedssTs not, however, the case. Experimentallys known
that a relatively strong Love wave, with a relatyvacceptable insertion loss, can re-occur perallicas
the guiding layer thickness is further incredethese correspond to higher order Love wave mddes.
our experimental results using a polymer phototesave guide layer on an SSBW device, we have seen
more than seven such modes. Figure 3 shows thah#iss sensitivity of the higher order modes is, to
within a factor of 2 to 3, comparable to the ficgive wave mode. Physically, the start of each Lwese
mode corresponds to a displacement supported irsubstrate; for a finite thickness substrate these
involve antinodes at each of the free surfacess Shbstrate displacement supports the wave ddbgite
intrinsic loss of the polymer and it is only as thelymer thickness is further increased, from that
corresponding to the start of the mode, that thestsate motion is reduced and the wave more fully
localised into the guiding layer. Once the locdi@aoccurs, the damping of the polymer becomely ful
effective, the insertion loss rises and the Loveravis damped. We would expect the layer guided SH-
APM modes to have a similar behaviour for the itigerloss. An important conclusion from this
interpretation is that it should be possible to tedatively thick wave-guiding layers with thes@ég of
acoustic wave sensors (Love waves and layer guBléeAPMs) without completely sacrificing mass
sensitivity. This should widen the range of wavédgumaterials that can be used with layer guided
acoustic wave sensors. Another consequence otthatonship between insertion loss and localisatibn
the Love wave is that frequency hopping by a faofdhree for a device optimised for mass sensjtiii
the first mode will cause the operating point tovedo the next mode rather than a lower point an th

same Love wave mode.
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In this report, all derivations and calculations/daeferred to a third layer composed of rigid
mass. However, the method adopted could be extetwled third layer that is either a liquid or a
viscoelastic material by, for example, introducemdviaxwell model with a relaxation time. Indeed, we
would anticipate that layer guided SH-APM sensomsuld benefit from the same enhancement of
sensitivity over SH-APM modes when being used ttembeine liquid properties, such as a density-

viscosity product, or the shear modulus of a polyme

VIl.  Conclusion

The concept of mass sensing using Love waves ayal lguided shear horizontal polarised
acoustic plate modes on finite thickness substiadassbeen developed using a dispersion equatioa for
three layer system. Formulae for the mass sertgithave been derived and the relative sensitivity o
Love wave and layer guided SH-APM modes considexamerical calculations of the formulae show
that the introduction of the guiding layer onto d-8PM sensor can increase the mass sensitivity by
several orders of magnitude and may even resuthass sensitivities exceeding those of Love wave
devices. It is predicted that layer guided SH-ARMSors having comparable or better sensitivitydoel
wave sensors, but having the advantage of transslocethe opposite face to the sensing surfaceléghou
be possible. The relationship between mass seihgiéind the slope of the numerically or experiménta
determined dispersion curve has been consideregl.effect of changing the operating frequency of a
given Love wave device has also been considerdtiebasis of the slope of the dispersion curvha#t
been shown that peak sensitivity scales linearly firiequency provided the Love wave mode does not
change, but that hopping the frequency so thabpiegating device changes Love wave modes will give
lower increase in obtainable peak sensitivity. Tiness sensitivity of sensor devices with thick wave-
guiding layers and the relationship between inserioss and multiple Love wave modes has been

elucidated.
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Figures

Figurel Definition of axes and propagation direction ftvear horizontally polarised waves in a

three-layer system; the displacement is indhairection.
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Figure2 Calculated dispersion curves as a function of madised guiding layer thicknesiq,=

dffv)) for the two-layer system of a substrate and aeaguiding layer. The multiple
modes of Love waves hawgvs and the associated acoustic plate modes trawe The

solid circle symbols indicate the analytical redaitthe start of each mode.
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Figure3 Mass sensitivity,g,| in nf kg™ for the three Love wave modes shown in figv2v has
been used in the calculation using Eqg. (34).
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Figure4 Mass sensitivity,g,| in n? kg* for the layer guided SH-APM modes associated with

three Love wave modes shown in fig.vgsv has been used in the calculation using Eq.
(34).
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Figureb. Comparison of the mass sensitivit§,]|in n? kg* for the three highest layer guided SH-
APM modes (dotted curves) associated with the finsee Love wave modes (solid
curves) using a reduced substrate thicknesa=0f7 pum. All other parameters are the

same as in Fig. 4.
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Figure6 Comparison of the sensitivityS,] in nf kg* for the mode 1 Love wave and the

corresponding mass sensitivity for the mode 2 Losxave obtained by increasing the
frequency by a factor of three whilst maintainihg guiding layer thickness constant; the
substrate is assumed infinite thickness. The hot&acaxis for both data sets has been

plotted using the original co-ordinate before tregjiency was increased.
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